Journal of Medicinal Chemistry

© Copyright 1963 by the American Chemical Society

VOLUME 6, NUMBER 5

Pyrimidines. XI. Structural Variations of 2,4-Diamino-6-(halogenoanilino)-5-nitrosopyrimidines¹

DARRELL E. O'BRIEN, FRED BAIOCCHI, ROLAND K. ROBINS, AND C. C. CHENG

Midwest Research Institute, Kansas City 10, Missouri

Received March 22, 1963

Derivatives of 2,4-diamino-6-(halogenoanilino)-5-nitrosopyrimidines (I) have been synthesized. These include compounds in which the 5-nitroso group of I has been replaced by other moieties (ethyl, nitro, bromo, cyano, carbamoyl, and ring nitrogen) as well as those in which the hydrogen atoms of the primary and secondary amino functions of I have been substituted by alkyl groups. Both areas furnish compounds that possess activity in the Adenocarcinoma-755 and Sarcoma-180 tumor systems.

The carcinostatic activity of 2,4-diamino-6-(p-bromoanilino)-5-nitrosopyrimidine (I, X = Br, Y = H), 2,4-diamino-6-(3,4-dichloroanilino)-5-nitrosopyrimidine (I, X, Y = Cl), and 2,4-diamino-6-(p-iodoanilino)-5-nitrosopyrimidine (I, X = I, Y = H) in the adenocarcinoma-755 tumor system² has led to a more thorough and systematic study of the synthesis of related compounds.

The study was divided into two general areas. The first involves the replacement of the 5-nitroso group by ethyl, nitro, bromo, cyano, and carbamoyl groups (illustrated as II) which possess size or electron-withdrawing effects similar to the nitroso group. In addition, some 2,4-diamino-6-(halogenoanilino)-s-triazines (III) are also included in this area of study since the

additional nitrogen causes the same electronic effect as that of a nitroso group at the same position. The 5ethyl derivatives (II, $R = C_2H_5$) were prepared by the fusion of the corresponding aniline and 2,4-diamino-6chloro-5-ethylpyrimidine.³ The substituted s-triazines

(1) This investigation was supported by the Cencer Chemotherapy National Service Center, National Cancer Institute of the National Institutes of Health, Public Health Service, Contract No. SA-43-ph-3025.

(2) D. E. O'Brien, F. Baiocchi, R. K. Robins, and C. C. Cheng, J. Med. Pharm. Chem., 5, 1085 (1962).

(III) were obtained from 2-chloro-4,6-diamino-s-triazine⁴ by the method of Banks.⁵

2,4-Diamino-6-chloropyrimidine⁶ was readily nitrated in a mixture of red fuming nitric acid and sulfuric acid at 20°, a procedure similar to that described for the preparation of 4-chloro-5-nitro-2,6-pyrimidinediol.⁷ The resulting 2,4-diamino-6-chloro-5-nitropyrimidine was then treated with the appropriate anilines to yield the corresponding 5-nitropyrimidines (II, $R = NO_2$).

Bromination of 2,4-diamino-6-chloropyrimidine with bromine and acetic acid in the presence of sodium acetate furnished a good yield of 2,4-diamino-5-bromo-6chloropyrimidine (IVa). Subsequent reaction of IVa and a substituted aniline afforded the desired 5-bromo analog (II, R = Br).

The 5-cyano derivatives (II, R = CN) were prepared from 2,4,6-trichloro-5-pyrimidinecarbonitrile⁸ (IVb) which was treated with an aniline at 0–5° to give a monoanilino-substituted pyrimidine.⁹ The structure for the latter compound was designated as 2,4-dichloro-6-(substituted-anilino)-5-pyrimidinecarbonitrile since the order of reactivity of the chloro groups in IVb should correspond to those in 2,4,6-trichloro-5-nitropyrimidine (IVc). The chloro group at the 2-position in IVc has been shown¹⁰ to be least reactive. The

(3) A. V. Merkatz, Ber., 25, 749 (1892).

(4) J. T. Thurston, J. R. Dudley, D. W. Kaiser, I. Heckenbleikner, F. C. Shaefer, and D. Holm-Hansen, J. Am. Chem. Soc., 73, 298 (1951).

(5) C. K. Banks, ibid., 66, 1127 (1944).

(6) W. Gabriel, Ber., 34, 3363 (1901).

(7) R. M. Cresswell and H. C. S. Wood, J. Chem. Soc., 4768 (1960).

(8) J. Nakazawa and M. Watatani, Takamine Kenkyusho Nempo, 12, 32 (1960).

(10) R. K. Robins, K. L. Dille, and B. E. Christensen, J. Org. Chem., 19, 930 (1954).

⁽⁹⁾ In the monosubstitution reaction of aniline and IV, it was found that when 2 equiv. rather than 1 equiv. of aniline were used yields as high as 80–90% could be achieved. The excess aniline absorbed hydrogen chloride liberated during the reaction to form the aniline hydrochloride, which was readily removed by washing with water. When the reaction temperature was raised to ca. 30° , a mixture of mono- and disubstituted products was obtained.

												Ultraviol		et absorption,			
														····1,	1[]		11
D.	D.	р.	D.	v	v	field,	м.р., °С	0	Cale-1	<u>,</u>	0	-1600 n-			εX 10.52	,	e × 10-≈
N1 NTU	112	 	154	л С	I	56. • •	-0.	(,	11		••••	11	N	Amax	10\$	Minax	10.3
N 112	N112	0.2115	11	U.	(1	40	187-189	-18.4	4.4	23.5	48.2	4.8	23.5	252	11.9	220	16.3 ຄະະ
NH-	NH	NO.	Н	Br	н	31	240-242	36.9	2.8	25.8	37 3	3.0	25 6	9999	97 6	239	20.0
NII	NH_2	NG ₂	11	I	П	38	278-279	32.1	2.4	22.3	32.5	2.7	21.8	293	25.2	289	25.0
N112	$\rm NH_2$	Br	11	Br	H	60	233 - 235	33.4	2.5	10.5	33.9	2.5	19.5	250	12.6	250	12.5
														297	25.2	204	23.7
$\rm NH_2$	$\rm NH_2$	Br	11	I	11	63	243 - 245	29.6	2^{-2}	17.3	29.8	2.3	17.7	252	13.8	252	14.2
														299	27.6	207	26.8
$N \Pi_2$	$N \Pi_2$	Br	11	CI	Cl	79	198-1:0	34.4	2.5	20.4	31.G	2.5	20.2	252	12.6	252	11.9
Cl	(1	CN	11	Br	И	8.3	274-276	38 1	1.5	63 2	.18 7	1.0	16.7	299	20.2	297	24.0
NU	NH	CN	11	Br	11	70	256-258	43.2	3.0	27.5	43.0	3.1	27.0	280	20.9	098	18.5
				1		• *	200 200						-1.0	200		288	30.2
$\rm NH_2$	$N11_2$	CN	11	1	11	76	267-268	35.5	2.6	23.9	37.8	3.0	24.2	283	24 ()	226	21.5
																292	32.7
$N11_2$	$\rm NH_2$	CN	11	Cl	(1)	63	255-256	44.7	2.7	28.4	4.1.6	2.8	28.6	223	22.2	230	10.6
														252	20.4	256	14.8
NIL.	NTEL.	CONH	L.L	12	τr	50	955 956	10.8	• 7 1	96 0	10.0		90.1	281	20.1	281	13.3
N 112	28112	CONTR	11	1)1	11	<i>.</i>	200-200	40.0	0.4	20.0	40.9	0.4	20.4	280	24.0	228	22.0
NH2	NH ₂	CONH ₂	14	1	11	56	260-261	35.6	3.0	22.7	35 4	3.0	22.1	285	25.5	220	22.9
																296	32.2
$N11_2$	$ m NH_2$	NO	CH_3	\mathbf{Br}	H	46^{b}	270 dec.	40.8	3.4	26.0	40.8	3.8	26.2	252	11.0	245	19.4
																317	11.6
$N11_2$	$N H_2$	NO ·	C₄H9	\mathbf{Br}	п	87°	212-214 dec.	46.1	4.7	23.0	46.1	4.7	23.0	243	19.8	250	11.6
2711	NUTCHI		.,		TT	≂oh	05.00	in od			.a =		01 0	302	11.9	328	15.2
N 112	NHCH ₃	н	11	15 r	11	38°	95-96	42.3*	4.5	22.4	42.7	4.5	21.8	297	22.9	235	14.1
																208	- 11 . S - 99 - G
NH.	NHCH ₃	NO	П	Br	н	76	251-252 dec.	40.8	3.4	26.0	40.9	3.5	26.3	250	17.1	251	16.8
	1.1-0.1-0									• •				335	8.4	325	13.9
														390	6.8		
$\rm NH_2$	NHCH ₃	н	11	Cl	Cl	39^{b}	$235 \mathrm{dec}$.	45.1°	4.1	23.9	45.4	4.1	23.9	2.58	12.9	260	13.5
														301	28.4	296	27.9
NH2	NHCH ₃	NO	H	CI	Cl	91	250-252 dec.	42,1	3.2	26.8	12.55	3.1	26.1	250	16.3	251	17.9
NHa	NHCH	NO	11	T	17	569	220-231 Jun	35.7	3.6		25.6	11.12	99 Z	032 951	8.2 20.3	330 953	101.0
. \$ 112	1451(113	11()	11	1	11	00	223-201)180.		0.0		00.0	0.0	22.0	325	8.2	310	14.1
														390	7 4	<i></i>	17.1
$N1I_2$	NHCH3	NO	CH_3	\mathbf{Br}	H	72 ^b	205-206 dec.	42.7	3.9	24.9	12.7	4.0	24.5	246	12.5	247	15/2
														268	12 1	320	15.2
$\rm NH_2$	NHC4H9	Н	Н	Br	н	580	83 ~8 5	48.7°	5.5	20/3	18.6	5.5	20.5	297	23.8	234	15.2
N711	MICHT	NO		D	тr	o -	000 001 1	10.1		02 A		•			10.0	295	22.5
N 112	N 11C4119	NU	11	154	11	60	220221 stee.	-19.1	4.1	23.0	40-1	4.9	23 3	200	18.2	270	18.5
NIL	NHCH	NO	н	Ŧ	н	325	202 der	40 8	4 2	20 4	40.8	4 3	20 3	253	21.1	935	11.5
			**	•		-	202 /10/1	1010		-0	1010	• ,	,	200		270	16.1
$\rm NH_2$	NHC4H9	NO	н	Cl	Cl	72^{b}	202 dec.	47.3	4.5	23.6	47.6	4.5	23.8	249	17.4	268	16.7
$N11_2$	$N(CH_3)_2$	Η	1 E	Br	н	63^{b}	186-188	46.7	4.6	22.7	46.7	4.6	22.3	300	26.2	234	17.0
																2.5.5	14.2
				•												297	21.6
NH_2	N(CH3)2	NO	11	Br	ŀi	67	207209 dec.	42.7	3.9	24.9	42.6	3.8	24.0	245	15.2	243	18.8
NUCLE	CI	τr	н	Br	14	76°	201-202 dec	39.84	3.6	16.9	ao .o	3 3	16.8	218	90.8	927	-14.5 -18.5
1411(7113	(1	11	.11	171	11	10	201 202 // 00.		0.0	10.10		0.0	10.0			207	13.6
																307	20.5
NHCHs	$\rm NH_2$	NO	11	Br	11	-1-1	259-261 des.	40.8	3.4	26.9	41.1	3.5	25.5	271	11.0	278	105
														340	3 2	392	4.5
$N(CH_3)_2$	NH_2	11	11	Br	Ħ	65^{b}	195-196	45.5	1.8	22.1	45.8	4.5	22.1	300	28.2	253	201.0
NUCLEA	NTI.	NO	11	D	U	6.5	950 .1	10 -	9 n	21.0	10 0	3.0	21 5	950	15 -	300	20.4 18 5
28(()/213/2	11 112	INCO		IJГ	11	0.0	2.00 (18):.	74.1	0.0	₩1.32	-1 - 0	ы. 9	-1.0	295	12.1	337	22.8

^{*a*} Determined in ethanol. ^{*b*} Prepared by method A (see Experimental). ^{*c*} Prepared by method B (see Experimental). ^{*d*} Hydrate, Hemihydrate.

possibility of the formation of 2-(substituted-anilino) isomer was also ruled out by means of paper chromatographic study on the final product, II (R = CN, see Experimental).

Ethanolic ammonia converted 2,4-dichloro-6-(substituted-anilino)-5-pyrimidinecarbonitrile at elevated temperature to the desired 2,4-diamino-6-(substitutedanilino)-5-pyrimidine carboratrile (II, R = CN). The corresponding 5-carboxamide derivatives (II, $R = CONH_2$) were readily formed when II (R = CN) was treated with concentrated sulfuric acid at room temperature.

The second area of this study involves the substitution of hydrogen atoms in the primary and secondary

$$R_{1} \xrightarrow{N} Cl$$

$$N \xrightarrow{R_{3}} R_{3}$$

$$R_{2}$$

$$IV$$
a, R_{1}, R_{2} = NH_{2}, R_{3} = Br
b, R_{1}, R_{2} = Cl, R_{3} = CN
c, R_{1}, R_{2} = Cl, R_{3} = NO_{2}
d, R_{4} = NH_{2}, R_{2} = Cl, R_{3} = H
e, R_{1} = N(CH_{3})_{2}, R_{2} = NH_{2}, R_{3} = H
f, R_{1} = NHCH_{3}, R_{2} = Cl, R_{3} = H

amino functions in I by alkyl groups. A general structure of this type of compound is represented by V.

Action of a primary or secondary amine with 2-amino-4,6-dichloropyrimidine¹¹ (IVd) gave 2-amino-4-chloro-6-(substituted-amino)pyrimidine, which was then fused with the appropriate aniline to form 2-amino-4-(substituted-amino)-6-(substituted-anilino)pyrimidine. The resulting product was readily nitrosated to give the corresponding 5-nitroso-6-(substituted-amino)pyrimidine (V, R_1 , R_2 , $R_5 = H$). The 5-nitroso-4-(N-substituted-anilino) pyrimidines (V, R_1 , R_2 , R_3 , $R_4 = H$) were prepared by the reaction of p-bromo-N-substituted aniline and diamino-6-chloropyrimidine,⁶ followed by nitrosation.

6-Amino-4-chloro-2-dimethylaminopyrimidine (IVe), prepared by Langerman and Banks,¹² was treated with substituted aniline to give 4-amino-2-dimethylamino-6-(substituted-anilino)pyrimidine. Nitrosation afforded the 2-dimethylamino analog of I (V, R_1 , $R_2 = CH_3$; $R_3, R_4, R_5 = H$).

Although the reaction of methylguanidine with diethyl 2,2-diethylmalonate gave exclusively one product (the 2-methylaminopyrimidine derivative),¹³ a mixture of two pyrimidines (2-methylamino-4,6-dihydroxypyrimidine and the isomeric 2-amino-1-methyl derivative) was obtained from the reaction of methylguanidine and diethyl malonate.¹⁴ The major product, 4,6-dihydroxy-2-methylaminopyrimidine, was treated with phosphorus oxychloride, to yield 4,6-dichloro-2-methylaminopyrimidine (IVf).14 This product was found to be identical with that prepared from 4,6-dichloro-2methylsulfonylpyrimidine¹⁵ and methylamine. The desired 2-methylaminopyrimidine analog of I was then synthesized from IVf by standard preparative procedures.

Preliminary antitumor screening results¹⁶ of these derivatives are listed in Table II. With the information presently available it appears that: (1) unlike most pyrimidine and purine derivatives, pyrimidines of this type are inactive against the Le-1210 system; (2) replacement of the nitroso group by an ethyl group results in the loss of the original activity; (3) activity in Ca-755 decreased with the reduction of the 5-nitroso group to the 5-amino group; (4) the corresponding s-triazine derivatives showed no activity; (5) replacement of the 5-nitroso group by a bromine atom caused appreciable loss of activity in Ca-755; (6) the corresponding 5-nitro and 5-carbamoyl analogs possess no activity in the Ca-755 system; (7) activity in the Sa-180 system was slightly improved with the replacement of the nitroso by a cyano moiety; and (8) substitution of the hydrogen atoms in the primary and secondary amino groups (structure V) by small alkyl groups (e.g., methyl) resulted in comparatively lower toxicity with retention of original activity.

Experimental¹⁷

2,4-Diamino-6-(p-bromoanilino)-s-triazine (III) (X = Br, Y = H).-A solution of 2,4-diamino-6-chloro-s-triazine (14.6 g., 0.1 mole),⁴ p-bromoaniline (18.9 g., 0.11 mole), concentrated hydrochloric acid (1 ml.), and 33% aqueous ethanol (300 ml.) was refluxed for 4 hr. The reaction mixture was then added to 1 1. of boiling water, followed by the addition of enough concentrated hydrochloric acid to effect complete solution. The solution was treated with charcoal and filtered, and the filtrate adjusted with aqueous ammonia to pH 8. The precipitated product was filtered, washed with ether, and dried at 100° to give 21 g. (70%) of the product, m.p. $251-253^{\circ}$. For analysis a small sample was recrystallized from butanol and dried at 110°, m.p. 253-254°; $\lambda_{\text{max}}^{\text{pH} 1}$ 268 m μ (ϵ 23,300); $\lambda_{\text{mx}}^{\text{mx} 1}$ 265 m μ (ϵ 27,800). Anal. Calcd. for C₃H₉BrN₆·H₂O: C₇ 36.1; H, 3.7; N, 28.1.

Found: C, 36.4; H, 3.7; N, 28.3.

2,4-Diamino-6-(3,4-dichloroanilino)-s-triazine (III) (X, Y = Cl) was similarly prepared in 66% yield, m.p. 202-204°; $\lambda_{\text{max}}^{\text{pf 1}}$ 267 m μ (ϵ 23,500); $\lambda_{\text{max}}^{\text{pf 1}}$ 265 m μ (ϵ 27,400). Anal. Calcd. Gor C₈H₈Cl₂N₆·1/₂H₂O: C, 38.6; H, 3.2; N,

30.0 Found: C, 38.9; H, 3.0; N, 30.0.

2,4-Diamino-6-(3,4-dichloroanilino)-5-ethylpyrimidine (\mathbf{H}) $(\mathbf{R} = \mathbf{C}_{2}\mathbf{H}_{5}; \mathbf{X}, \mathbf{Y} = \mathbf{C}_{1})$.—A mixture of 2,4-diamino-6-chloro-5ethylpyrimidine³ (17.3 g., 0.1 mole), 3,4-dichloroaniline (17.8 g., 0.11 mole), and glacial acetic acid (6 g., 0.1 mole) was fused at 180° for 20 min. The resultant glassy substance was dissolved in 200 ml. of dilute hydrochloric acid, treated with charcoal, and filtered. The filtrate was neutralized with aqueous ammonia and cooled. The precipitated product was then filtered, washed well with ether, recrystallized from aqueous ethanol, and dried at 100° (see Table I).

2,4-Diamino-6-chloro-5-nitropyrimidine.-To a mixture of concentrated sulfuric acid (90 ml.) and fuming nitric acid (90 ml., sp. gr. 1.60 at 15°) cooled at 20° was slowly added, with vigorous stirring, 2,4-diamino-6-chloropyrimidine (58 g., 0.4 mole).⁶ The temperature during the addition was maintained between 20 and 25° by outside cooling. After the addition was complete, the solution was stirred at room temperature for 1 hr. The yellow solution was then added at once to 750 g. of flaked ice, and the suspension allowed to stand for 1 hr. The resulting yellow solid was filtered and washed with water until all the acid was removed. The solid was then purified by extraction with 500 ml. of boiling water, washed with 200 ml. of ethanol, and dried at 100° to give 22 g. (29%) of analytically pure product, m.p. 228° with violent decomposition; $\lambda_{\max}^{pH\,1}$ 298 m μ (ϵ 11,700), 364 m μ (ϵ 5500); $\lambda_{\max}^{pH\,1}$ 285 m μ (ϵ 8300), 311 m μ (ϵ 7400).

Anal. Calcd. for C₄H₄ClN₅O₂: C, 25.3; H, 2.1; N, 36.9. Found: C, 25.4; H, 2.3; N, 36.7.

2,4-Diamino-5-nitro-6-(substituted-anilino)pyrimidines (Table I). General Procedure.—A mixture of 2,4-diamino-6-chloro-5-

^{(11) (}a) H. Büttner, Ber., 36, 2232 (1903); (b) W. Gabriel and B. Coleman, ibid., 36, 3381 (1903).

⁽¹²⁾ M. J. Langerman and C. K. Banks, J. Am. Chem. Soc., 73, 3011 (1951).

^{(13) (}a) R. Majima, Ber., 41, 176 (1908); (b) B. Roth, J. M. Smith, and M. E. Hultquist, J. Am. Chem. Soc., 73, 2864 (1951).

^{(14) (}a) W. Winkelmann, J. prakt. Chem., 115, 292 (1927); (b) W. R. Boon, J. Chem. Soc., 2146 (1957).

⁽¹⁵⁾ H. C. Koppel, R. H. Springer, R. K. Robins, and C. C. Cheng, J. Org. Chem., 26, 792 (1961).

⁽¹⁶⁾ The biological testing was performed by Battelle Memorial Institute, Microbiological Associates, Inc., and Wisconsin Alumni Research Foundation under the auspices of the Cancer Chemotherapy National Service Center.

⁽¹⁷⁾ All melting points (corrected) were taken on a Thomas-Hoover melting point apparatus. The ultraviolet absorption spectra were determined with a Beckman DK-2 spectrophotometer.

TABLE II

Comparison of Antitumor Activities of 2,4-Diamino-6-(Halogenoanilyno)-5-nitrosopyrimidines

AND RELATED COMPOUNDS

Ri Ri Ri Ri X Y mg./kg. Sa.180 Ca.755 NH2 NH4 NO H Br H 444 +++ NH2 NH2 NO H I H 322 \pm +++ NH2 NH2 NO H Cl Cl 57 \pm +++ NH2 NH2 ' H Br H 350 NH2 NH2 ' H Br H 350 - NH2 NH2 ' H Br H 63 - NH2 NH2 ClH3 H ClH3 CH4 0 - - NH2 NH2 NH2 H ClH3 CH3 250 - - NH2 NH4 NH2 H CH4 100 - - NH2 NH4 NH4<							$Dose^{n}$	Activity ^b		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	R ₁	R_2	R ₃	\mathbf{R}_4	х	Y	mg.,/kg.	Sa-180	Ca-755	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	NO	H	Br	14	44		++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	NO	H	I	H	32	±	++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$ m NH_2$	NO	Н	Cl	Cl	57	±	++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\rm NH_2$	e.	Н	Br	H	350			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	r	Н	C1	CI	63		- w.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	r	Н	Br	Br	63			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	NH_2	C_2H_b	Н	CH_3	H	6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	C_2H_5	П	CH_3	CH_{y}	50	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\rm NH_2$	C_2H_5	Н	\mathbf{CI}	Cl	50			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	$\rm NH_2$	H	CH_3	Н	120		·· ·· ·	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	NH_2	H	CH3	$CH_{\mathfrak{d}}$	250			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	NH_2	Н	CH_{4}	Cl	100			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	$\rm NH_2$	Ħ	\mathbf{Br}	Н	31		+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	Br	Н	\mathbf{Br}	H	500	*		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	Br	Н	ſ	н	-400		土	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	Br	Н	Cl	Cl	200	-	\pm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH_2$	$\rm NO_2$	Н	\mathbf{Br}	11	125		- 710.0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\rm NH_2$	CN	Н	\mathbf{Br}	Н	200		_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	NH_2	CN	Н	I	H	250	\pm	_	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\rm NH_2$	CN	Н	Cl	C1	125	\pm	+	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	NH_2	CONH_2	Н	Br	H	125	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	NH_2	CONH_2	H	I	H	250	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NHCH_3$	NÖ	Н	\mathbf{Br}	H	400	+	++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\rm NH(CH_2)_3CH_3$	NO	Н	\mathbf{Br}	14	400	-	<u> </u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	NHCH3	NO	Н	I	Н	200		++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	NH_2	$\mathrm{NH}(\mathrm{CH}_2)_3\mathrm{CH}_3$	NO	Н	1	Н	200	—	+-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NHCH_3$	NO	Н	Cl	Cl	40t)	<u></u>	+	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$\rm NH(CH_2)_3CH_3$	NO	Ħ	Cl	Cl	400		\pm	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	$N(CH_3)_2$	NO	\mathbf{H}	Br	П	200		++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NHCH_3$	NH_2	NO	Н	Br	Н	200		++	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$N(CH_3)_2$	$\rm NH_2$	NO	Н	\mathbf{Br}	Н	200		4-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\rm NH_2$	NH_2	NO	CH_3	\mathbf{Br}	Н	400		- <u>-</u> -	
NH_2 $NHCH_3$ NO CH_3 Br H 400 + ++	$\rm NH_2$	$\rm NH_2$	NO	$(\mathrm{CH}_2)_3\mathrm{CH}_3$	Br	Н	400			
	$ m NH_2$	$\rm NHCH_3$	NO	CH_3	Br	Н	400	-+-	+ +	

^{*a*} Below toxicity level. ^{*b*} ++, activity confirmed: +, activity not yet confirmed; \pm , borderline activity: -, inactive. Testing done by the Contract Screeners of CCNSC, see ref. 16. ^{*e*} Ring nitrogen (*s*-triazine).

nitropyrimidine (18.9 g., 0.1 mole), a substituted aniline (0.1 mole), and dimethylformamide (160 ml.) was heated at 120° with stirring for 16 hr. The dark solution was then added to 300 ml. of boiling water followed by the addition of enough dimethylformamide to effect complete solution. The boiling solution was treated with charcoal, filtered, and the filtrate allowed to cool slowly. The yellow-orange crystalline product was filtered, washed with water, ethanol, and ether, and recrystallized from aqueous dimethylformamide.

2,4-Diamino-5-bromo-6-chloropyrimidine.—A solution of 2,4diamino-6-chloropyrimidine (28.9 g., 0.2 mole)⁶ and freshly fused sodium acetate (16.4 g., 0.2 mole) in acetic acid (300 ml.) was warmed to 90°. To the hot, stirred solution was added dropwise 32 g. (0.2 mole) of bromine. After the addition was complete, the mixture was stirred and heated at 90–95° for 1 hr. A small amount of solid was separated by filtration. The filtrate was cooled, the resulting crystalline product was filtered, washed with three 100-ml. portions of ether, and dried at 100° to yield 39 g. (88%), m.p. 218–219°. Recrystallization from ethanol and drying at 130° raised the melting point to 219–220°; $\lambda_{max}^{ethanol}$ 232 nµ (ϵ 12,300), 293 mµ (ϵ 7800).

Anal. Caled. for C₄H₄BrClN₄: C, 21.5; H, 1.8; N, 25.0. Found: C, 21.9; H, 2.0; N, 25.2.

2,4-Diamino-5-bromo-6-(substituted-anilino)pyrimidines (Table I). General Procedure.—A solution of 2,4-diamino-5bromo-6-chloropyrimidine (22.3 g., 0.1 mole), a substituted aniline (0.1 mole), 1 ml. of concentrated hydrochloric acid, and 300 ml. of 33% aqueous ethanol was refluxed for 6 hr. The reaction mixture was then added to 1 l. of boiling water, and enough concentrated hydrochloric acid was added to effect complete solution. The solution was treated with charcoal and filtered. The filtrate was adjusted to pH 8 by means of aqueous ammonia. The resulting precipitated product was filtered while hot, washed with two 250-ml. portions of boiling ethanol, and recrystallized from a mixture of water and dimethylformamide.

2,4-Dichloro-6-(substituted-anilino)-5-pyrimidinecarbonitriles (Table I). General Procedure.—To a cooled (0°) solution of 2,4,6-trichloro-5-pyrimidinecarbonitrile⁻ (20.8 g., 0.1 mole) in 500 ml. of anhydrous ether was slowly added a solution of a substituted aniline (0.2 mole) in a minimum amount of anhydrous ether. The temperature of the solution during the addition did not exceed 5°. After the addition was complete, the mixture was stirred at 0–5° for 3 hr. The solid product was filtered, washed with two 100-ml. portions of ether, three 250-ml. portions of water (which removed the substituted aniline hydrochloride), and again with two 100 ml. portions of ether, and air dried. 'The product is sufficiently pure to be carried on to the next step. Purification for analysis can be accomplished by recrystallization from ethanol.

2,4-Diamino-6-(substituted-anilino)-5-pyrimidinecarbonitriles (Table I). General Procedure.—A mixture of 2,4-dichloro-6-(substituted-anilino)-5-pyrimidinecarbonitrile (0.05 mole) and

250 ml. of saturated ethanolic ammonia was heated in an autoclave at 135° for 12 hr. The resulting solution was evaporated to dryness and the residue recrystallized from butanol. A final recrystallization from aqueous ethanol afforded an analytically pure product.

The structural assignment (see Discussion part) in this group of compounds was further substantiated by paper chromatographic measurements (one spot in each case). R_t values for 2,4-diamino-6-(p-bromoanilino)-5-pyrimidinecarbonitrile: 0.71 (isopropyl alcohol-water, 7:3), and 0.80 (butanol saturated with acetic acid); for 2,4-diamino-6-(p-iodoanilino)-5-pyrimidinecarbonitrile: 0.73 and 0.81, respectively.

2,4-Diamino-6-(substituted-anilino)-5-pyrimidinecarboxamide (Table I). General Procedure.—With good stirring, 2,4-diamino-6-(substituted-anilino)-5-pyrimidinecarbonitrile (0.05 mole) was added slowly to 50 ml. of concentrated sulfuric acid at 30-35°. The solution was stirred at this temperature for 12 hr. and then added, with stirring, to 500 g. of flaked ice. The precipitated product was separated by filtration and washed well with icewater. The crude product was dissolved in hot, dilute sulfuric acid, treated with charcoal, and filtered. The filtrate was adjusted to pH 8 with aqueous ammonia and the product filtered while hot, washed with water, and dried at 100°. Repeated reprecipitation afforded product of analytical purity.

4,6-Dichloro-2-methylaminopyrimidine.—In a flask equipped with two modified Friedrichs condensers designed to retain low boiling liquids was added 23 g. (0.23 mole) of triethylamine and 7 g. (0.23 mole) of methylamine diluted with 200 ml. of ethyl acetate. To this solution was added 30 g. (0.154 mole) of 4,6-dichloro-2-(methylsulfonyl)pyrimidine¹⁵ dissolved in 200 ml. of ethyl acetate. The temperature was kept below 35° during the entire reaction. After 2 hr. of stirring the reaction mixture was evaporated and the pale yellow residue recrystallized from ethanol to give 13 g. (77%) of white crystals, m.p. $162-163^\circ$. The product was found to be identical with that reported by Winkelmann¹⁴⁶ and Boon.^{14b}

4-Amino-6-chloro-2-methylaminopyrimidine.—A mixture of 4,6-dichloro-2-methylaminopyrimidine (10.8 g.) and ethanolic ammonia was heated at 80° for 8 hr. in a sealed vessel. Evaporation of the reaction mixture and purification of the product from methanol afforded 7 g. (65%) of white crystals, m.p. 193–194°. *Anal.* Calcd. for $C_{5}H_{7}ClN_{4}\cdot H_{2}O$: N, 31.8. Found: N, 31.9.

General Preparations of 4-(Substituted-anilino)-5-nitrosopyrimidines (V). A.—A mixture of the appropriate 4-chloropyrimidine, an equivalent amount (plus a 10% excess) of the substituted aniline, and several milliters of concentrated hydrochloric acid was heated in an oil bath. A clear, dark colored melt was observed around 150° followed by an exothermic reaction that caused the temperature to rise to ca. 200°. The reaction mixture was held at this temperature for several minutes. It was then cooled, dissolved in boiling ethanol, treated with charcoal, and filtered. The filtrate was made basic with dilute aqueous ammonia and cooled. The precipitated 4-(substituted-anilino)pyrimidine was filtered and washed with water. Nitrosation of the intermediate to the desired product was carried out by the procedure of O'Brien. et al.²

B.—A solution of 0.10 mole of the appropriate 4-chloropyrimidine, 0.11 mole of the substituted aniline, and 2 ml. of concentrated hydrochloric acid in 200 ml. of 50% ethanol was refluxed for 4 hr. The reaction mixture was poured into 800 ml. of boiling water. The resulting solution was treated with charcoal, filtered, and the filtrate adjusted to pH 8 with aqueous ammonia. On cooling it deposited the intermediate 4-(substituted-anilino)-pyrimidine, which was then isolated and nitrosated as described in Method A.

Acknowledgment.—The authors wish to express their appreciation to Mrs. Phyllis G. Lewis, Mrs. Margaret L. Rounds, and Mr. Hal P. Van Fossen for their valuable assistance in performing analytical and instrumental measurements.

Synthesis and Antitumor Activity of 9-(Tetrahydro-2-furyl)purine Analogs of Biologically Important Deoxynucleosides¹

WILLIAM A. BOWLES, F. HOWARD SCHNEIDER, LELAND R. LEWIS, AND ROLAND K. ROBINS

Department of Chemistry, Arizona State University, Tempe, Arizona

Received March 11, 1963

The syntheses of the 9-(tetrahydro-2-furyl) derivatives of hypoxanthine, guanine, and 2-amino-6-purinethiol (6-thioguanine) have been accomplished. The reaction of 2,3-dihydro-2-methylfuran with 6-chloropurine has been studied. Several of the 9-(tetrahydro-2-furyl)purines exhibit significant antitumor activity against a variety of experimental mouse tumors. The significance of these results is discussed in terms of therapeutic index, transport, and structural relationship to various purine-2'-deoxynucleosides and other biologically active purine derivatives.

The synthesis of certain 6-substituted-9-(tetrahydro-2-pyranyl)purines and 6-substituted-9-(tetrahydro-2furyl)purines has recently been reported.^{2,3} The preliminary antitumor activity of several of these derivatives has prompted a detailed study of this group of compounds. Since the 9-(tetrahydro-2-furyl)purines appeared to be superior in the early stages of animal testing, attention was directed to these derivatives. Because the 9-(tetrahydro-2-furyl)purines can be envisaged as analogs of the important naturally occurring purine deoxynucleosides, the first major goal of this

(3) L. R. Lewis, F. H. Schneider, and R. K. Robins, J. Org. Chem., 26, 3837 (1961).

work was to synthesize the 9-(tetrahydro-2-furyl) analog of 2'-deoxyguanosine and 2'-deoxyinosine. 6-Amino-9-(tetrahydro-2-furyl)purine, the analog of 2'deoxyadenosine, had previously been prepared³ and exhibited definite antitumor activity. An attempt to prepare 6-hydroxy-9-(tetrahydro-2-furyl)purine (IV) directly from 6-chloro-9-(tetrahydro-2-furyl)purine with aqueous sodium hydroxide resulted in degradation of the purine ring to give 6-chloro-4,5-diaminopyrimidine⁴ as the only isolatable product. In order to obtain IV, 6-benzyloxypurine (I) was prepared from 6-chloropurine by the general method of Huber.⁵ Treatment of I with 2,3-dihydrofuran in the presence of acid gave

⁽¹⁾ This investigation was supported by Research Grants CY-4008(C3) and CY-4008(C4) from the National Cancer Institute of the National Institutes of Health, Public Health Service, Bethesda 14, Md.

⁽²⁾ R. K. Robins, E. F. Godefroi, E. C. Taylor, L. R. Lewis, and A. Jackson, J. Am. Chem. Soc., 83, 2574 (1961).

⁽⁴⁾ R. K. Robins, K. J. Dille, C. H. Willits, and B. E. Christensen, J. Am. Chem. Soc., 75, 263 (1953).
(5) G. Huber, Chem. Ber., 90, 698 (1957).